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Numerical simulations are compared with experimental results for the so-called ”anti-Hall bar
within a Hall bar” configuration, which is a doubly-connected, double-boundary electronic system
that has been experimentally investigated by Mani. Here, we illustrate the application of a network
model for magneto-transport, which allows the evaluation of the longitudinal and Hall voltages,
and the current distribution, in this geometry. Thus, we rebuild the experimental configuration,
including the sample geometry with the boundary conditions, and the two independent floating
current sources, within our network. As in the reported experiment, we realize the Hall voltages
and longitudinal voltages at both the inner and outer boundary. In excellent agreement with Mani’s
experiments, we find that the Hall voltages at the inner (”anti-Hall bar”) and outer (Hall bar)
boundaries depend just on the individual current injected via the corresponding boundary, while
the longitudinal voltage depends exactly on the sum of the injected currents.

PACS numbers: 73.43.Cd, 73.43.Fj, 73.43.Qt, 73.43.Jn

I. INTRODUCTION

The quantized Hall effect (QHE) stimulated a
broad experimental and theoretical study of the two-
dimensional electron system that was aimed at un-
derstanding the physical origin of this remarkable
phenomenon.[1] Laughlin[2] provided an explanation
of the observed Hall quantization by carrying out
a gedanken gauge argument experiment on a two-
dimensional electron system, which was rolled up into
a cylinder. The resulting theory implied a bulk origin for
the QHE after presuming a persistent bulk current, and
insensitivity to basic features such as the sample topol-
ogy, the existence of current contacts, and the connec-
tivity of current and voltage contacts via a boundary.
Büttiker[3] presented a supplementary perspective, uti-
lizing a Landauer formalism, that emphasized the special
role in the quantized Hall effect for the quantized con-
ductance associated with edge currents (EC)[4, 5]. After
more than two decades of study, these theoretical per-
spectives constitute the most widely used approaches for
understanding the QHE that is observed in experiment.

In order to determine the relative contributions of
the bulk- and the edge- current, Mani developed an ex-
perimental configuration that combined aspects of the
Hall geometry, which is often investigated in the labo-
ratory, with the doubly connected topology of Laugh-
lin’s cylinder.[6–8] Mani’s resulting inversion-symmetric
”anti-Hall bar within a Hall bar” configuration (see Fig.
2) included a planar doubly connected specimen with cur-
rent and voltage contacts on both the interior and exte-
rior boundaries, and a current source attached to each
boundary. Thus, Mani performed measurements using

two independent floating current sources, one for the ex-
terior boundary Hall bar, and the other for the interior
boundary ”anti-Hall bar.” The experiments showed dual
simultaneous, independent Hall voltages, one at both the
inner (”anti-Hall bar”) and outer boundaries (Hall bar)
of the specimen. That is, the experiment demonstrated
two simultaneous Hall effects, each with its own quan-
tized Hall plateaus, in a single specimen.[6–8]

The same series of measurements indicated, however,
that the longitudinal voltages were proportional to the
sum of the currents injected via the two boundaries, and
these voltages were identical at the Hall bar and the
”anti-Hall bar.” The results identified that the quantized
Hall resistance measurement is the Hall effect measure-
ment, which involves current and voltage contacts located
on one and the same boundary.[6–8]

Here, we apply a network model to reproduce the ex-
perimental situation and examine the microscopics be-
hind the realization of multiple simultaneous ordinary-
and quantized Hall- effects in a single specimen. A sup-
plementary aim is to provide further insight into the na-
ture of the current distribution, and the Hall effect mea-
surement, in the multiply connected specimen.

II. THE NETWORK MODEL

In this section, we provide a brief introduction to our
network model. For more details, see references [9–12].
A common way to treat 2D-systems with disorder in the
high magnetic field regime is to consider a lateral ran-
dom potential modulation, which varies slowly on the
scale of the magnetic length. This leads to magnetic
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FIG. 1: Top: A contour plot of the lateral potential mod-
ulation, where the dark areas represent the valleys, and the
light shaded areas represent the potential hills. In the fig-
ure, it is assumed that the hills are encircled clock-wise, while
the valleys are encircled counter clock-wise. Bottom: At the
saddle point, adjacent loops get close to each other, and this
encounter is represented at the nodes of the network, by edge
channel pairs. Here, P < 1 corresponds to EF above the
LL center (EF > ELL). As shown by the Eqs.(1), the out-
put potentials µ2 and µ4 are completely determined by the
input potentials µ1 and µ3. The EC pairs result from the
loops of magnetic bound states encircling potential hills. If
EF < ELL the loops encircle potential valleys and the situ-
ation gets turned by 90◦. However, this can be described by
the same P , but setting P > 1.

bound states, which are extended along equipotential
lines. For an infinite sample, all states are localized ex-
cept for a particular energy, which corresponds to the
center of the Landau level (LL). All states outside the
center of the LL participate in transport only via quan-
tum tunnelling, which preferably happens at saddles of
the potential landscape (see upper part of Fig.1). The
tunnelling probability increases, if the Fermi energy ap-
proaches the energy of the saddle points. The saddles
can be considered as the nodes of a network with two in-
coming and two outgoing channels for each node. Since
these channels result from magnetic bound states, they
are physically equivalent to ECs. Although the basic idea
of our network follows the Chalker Coddington (CC) net-
work model[13], our handling of the nodes is substantially
different: In contrast to a CC network our network does
not use a transfer matrix for amplitudes and phases. We
use transmission by tunnelling and the key point in our
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FIG. 2: The ”anti-Hall bar within a Hall bar” experimental
configuration utilized by Mani.[6–8] Here, the exterior bound-
ary, associated contacts, and current source IA,B constitute
the Hall bar, while the interior boundary, interior contacts,
and the current supply I1,2 make up the ”anti-Hall bar” con-
figuration. In the typical experiment, each of the floating
current sources are set to a constant value, and the voltages
on the Hall bar and/or the ”anti-Hall bar” are probed as a
function of the ramped transverse magnetic field.

model is that this tunnelling is handled as a back scat-
tering process in the EC picture. On this basis, we in-
troduced a back scattering function P , which is formally
equivalent to the ratio R/T of the Landauer-Büttiker for-
malism, with R and T being the reflection and transmis-
sion coefficient respectively (see lower part of Fig. 1). As
mentioned before, the coupling depends on the position
of the Fermi level and hence, on the filling factor ν, which
finally means that P = P (ν). The potential of the out-
going channels is completely determined by the potential
of the incoming channels as follows[9]:

µ2 =
µ1 + Pµ3

1 + P
(1a)

µ4 =
µ3 + Pµ1

1 + P
(1b)

The whole network consists of a matrix-like arrange-
ment of nodes, which are interconnected as shown in Fig.
3. The shape of the sample is defined by the lateral dis-
tribution of the carrier density on the network. The lat-
eral carrier density profile itself is calculated from the
distribution of lateral electrostatic bare potential, which
is used as a tool for designing the shape of the sample.
Zero-bare-potential indicates regions where the bulk car-
rier concentration is achieved and a non-zero positive po-
tential is used to define gated regions of reduced carrier
density and the side depletion zones at the sample edges.
If the potential is set sufficiently high, one obtains carrier
free regions as needed for parts which should be ”etched
away” from the ”wafer” in order to get the designed
shape. In this way, each node of the network obtains its
individual local carrier density and hence it’s own filling
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FIG. 3: Sample layout for the network model of the ”anti-Hall bar within a Hall bar” geometry with two independent current
sources IA,B and I1,2. The network consists of interconnected nodes with each of them representing a saddle point as shown in
Fig. 1. These saddle points appear as shaded circles, with the gray scale applied towards indicating the local carrier density.
The arrows, which are only visible in the expanded portion of the figure, represent the incoming and outgoing channels. The
area with dark nodes indicates a constant carrier concentration of n0 = 4 × 1011cm−2, which defines the bulk region of the
sample. The gradual transition from dark gray to light gray represents the side depletion zone, from the bulk to zero carrier
density at the sample boundaries (see the expanded portion of the figure). The current contacts are indicated by white dots at
the inner and outer boundary of the sample. The Hall voltages are measured between the voltage probes (3,5) for the ”anti-Hall
bar” and between (C,E) for the Hall bar. The corresponding longitudinal voltages are measured between the voltage probes
(3,4) for the ”anti-Hall bar” and (C, D) for the Hall bar.

factor. As a consequence, each node obtains it’s corre-
sponding individual coupling function Pj(ν(x, y)), where
x, y represent the location of the node in the x− y-plane
and j denotes the Landau level index. At this point it
should also be mentioned, that each involved LL is rep-
resented by a complete network and all these networks
contribute in parallel. In [10, 11], it has been shown that
for each involved LL P (ν) = exp(∆ν/k) with ∆ν being
the filling factor relative to half filling (∆ν = ν − 0.5)
and k being a parameter, which accounts for the sharp-
ness of the plateau to plateau transitions. Metallic con-
tacts are defined within the network by interconnecting
all channels of the different layers of the network (which
are associated with the different LLs) at the designated
location of the contact. In particular, current contacts
are realized by setting them to a constant non-zero po-
tential.

The actual calculation consists of two main parts: (I)
For calculating the occupation numbers, standard pro-
cedures are used and the Fermi level in the bulk region
is calculated by filling up the density of states (DOS)
with the constant bulk carrier density. The DOS is com-
posed by the superposition of the magnetic field depen-
dent Gaussian shaped DOS of spin split LLs. The Fermi
level for regions of non-zero electrostatic bare potential
like at the edges is forced to match the obtained (mag-
netic field dependent) Fermi level in the bulk. This al-
lows for a self-consistent electrostatic potential and a re-
arrangement of the carrier density at the edges as first
proposed by Chklovskii et al.[14] (II) The lateral carrier
density profile obtained as above enters the nodes of the

network and, in another self-consistent iteration proce-
dure, the lateral distribution of the excitation voltage,
which is introduced via the current contacts, is calcu-
lated. From this step, the potential difference for any
designated pair of voltage probes is obtained as a function
of the magnetic field. The current at the current contacts
is calculated only after arriving at the self-consistent so-
lution in the network, which allows finally to calculate
the various resistances. This means that, in principle, a
constant supply voltage is used in the network model, in-
stead of a constant supply current. Note, however, that
this makes no difference for calculating the resistances
of a standard QHE setup with a single current source.
For achieving a constant current mode, which is needed
for the ”anti-Hall bar within a Hall bar” configuration,
the potentials at the current contacts are additionally
varied in a proper way during the iteration procedure in
order to get the required preset current. In this way, the
constant current mode is realized, and it is possible to
simulate also the simultaneous presence of several inde-
pendent current sources such as that which appears in
the ”anti-Hall bar within the Hall bar” setup.

One more aspect should be addressed prior to the dis-
cussion of our results. At the first glance, our regular
network appears as a model of a periodic potential modu-
lation, while the native random potential of a real sample
suggests that a random network should be used instead.
However, as will be demonstrated in the following, our
network model can be understood also as a concept for
effective discretization of a random network. Obviously,
lateral long range potential fluctuations will lead to a
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FIG. 4: Cutout of the bulk region showing the scheme of discretization of a random potential on the basis of our network
model. The average filling factor of the associated Landau level is assumed to be close to ν = 0.5. The shaded regions represent
ν > 0.5, which corresponds to a value of the coupling function P << 1 and the non-shaded regions represent ν < 0.5, which
corresponds to P >> 1. The basic grid consists of alternating rows and lines of nodes in same orientation. Therefore, a change
from P << 1 to P >> 1 appears graphically as a rotation of the nodes by 90 degrees within a line and a row and as can be seen
in the figure, the corresponding nodes inside and outside the shaded area appear rotated against each other. Following now
the inter connections in the network, one can see that in this way a channel at the boundary between ν > 0.5 and ν < 0.5 is
automatically guided to follow these boundaries (bold line). In real samples, this corresponds to a arbitrarily shaped magnetic
bound state following the contour lines of the random potential. Most of the nodes with P << 1 or P >> 1 serve as some sort
of switching device in the network and are therefore not physically active. Only those near the saddle of the real potential,
where also the real magnetic bound states get close together (marked by the arrows), act physically as tunneling junctions
within the framework of the Landauer-Büttiker formalism.

corresponding lateral fluctuation of the local filling fac-
tor, which, in turn, will lead to a lateral variation of the
coupling function P of the nodes in our network. Sup-
pose we wish to model a random potential on the basis
of our regular network, then we need to choose the grid
period to be much less than the typical length scale of
the potential fluctuations. This is qualitatively shown in
Fig. 4: The system is supposed to be close to half filling,
which means the possibility of bulk current flow. How-
ever, half filling means ν = 0.5 on average and, due to
the potential fluctuations, there will exist regions with
locally ν > 0.5 and regions with locally ν < 0.5. In Fig.4
the shaded regions represent ν > 0.5 and the non-shaded
regions ν < 0.5. Most effective coupling at the nodes
appears at P = 1, which corresponds to exact half fill-
ing ν = 0.5. Due to the randomization of the potential,
only few of all nodes will remain close to half filling and
most of them will depart from half filling, which leads to
a coupling function of P << 1 in the shaded regions and
P >> 1 outside. However, P << 1 or P >> 1 means
mainly that an incoming channel is almost completely
transmitted either to the one or the other outgoing chan-
nel of the node, which appears as a rotation of a node
by 90 degrees upon changing from one case to the other.
As can be seen in Fig. 4 in this way our network guides
the transmitted channels all around the boundaries be-

tween ν > 0.5 and ν < 0.5. Therefore, in this case, most
of the nodes are physically inactive, but just switching
the whole transmitted channel to either the one or the
other outgoing channel. Only the nodes near the saddles
of the real potential, where ν ≈ 0.5, and where also the
real loops of the magnetic bound states get close to each
other, become physically active by coupling different real
loops. On this basis our network can also be understood
as an effective theoretical concept for setting up a random
network with a discretization on a regular grid. However,
already from considering Fig.4, it is clear, that a sufficient
randomization of all conductor elements of a realistically
shaped macroscopic sample geometry will require an in-
crease in the size of the network by at least an order of
magnitude in both directions in comparison to the sim-
ulations without randomization. For this reason, at the
present, a ”random network” modelling of the intricate
”anti-Hall bar within a Hall bar” geometry is beyond our
computing hardware capability. We tested instead the ef-
fect of randomization for a simple Hall bar geometry and
found that the qualitative transport behavior and all ob-
served trends remain the same. Only a certain amount
of additional broadening appeared on the plateau tran-
sitions and the Rxx peaks. Indeed, only details of the
curvature, specially in the tails of the Rxx peaks, appear
sensitive to the details of the random potential. This is
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FIG. 5: (a) A network model simulation of the interior ”anti-
Hall bar” Hall voltage, V3,5, at different I1,2 and constant
exterior current IA,B = 25nA. The interior Hall voltage V3,5

is proportional to the interior current I1,2. (b) Simulation of
the exterior (Hall bar) Hall voltage, VC,E, at different currents
I1,2 and constant exterior current IA,B = 25nA. The exterior
Hall voltage VC,E is insensitive to the interior current I1,2.

not surprising, however, since in a random potential, bulk
current can be expected to become highly inhomogeneous
near the percolation threshold. As we have aimed only to
reproduce the main trends observed in magnetotransport
studies of the ”anti-Hall bar within a Hall bar” geome-
try in this paper, we performed our calculations without
randomization, and expect the main conclusions drawn
from the simulations to hold their validity.

III. RESULTS

The network used here for the simulation of the ”anti-
Hall bar within a Hall bar” structure is rectangular in
shape and consists of 217 x 105 nodes. The width of
the annulus (see device in Fig. 3) contains 16 nodes.
The voltage probes, which are labelled from C − F for
the Hall bar, and 3 − 6 for the ”anti-Hall bar,” are 16
nodes long and 14 nodes wide (see Fig. 3). Two inde-
pendent constant current sources IA,B and I1,2 are con-
nected to the inner and outer boundary of the sample as
indicated in Fig. 3. The gradual change from dark- to
light- gray at the boundaries indicates the side depletion
zones, and this region is 3 nodes wide. The light gray
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FIG. 6: A network model simulation of (a) the longitudinal
voltage V3,4 at the ”anti-Hall bar” and (b) the longitudinal
voltage VC,D at the Hall bar. Panel (a) and (b) are iden-
tical because the longitudinal voltages are insensitive to the
boundary of origin of the current, unlike the Hall voltages.
Note that the diagonal voltages vanish at current compensa-
tion, IA,B = −I1,2.

areas indicate vanishing carrier density, while the dark
gray area indicates the bulk region with a carrier density
of n0 = 4×1011cm−2. An effective mass of m∗ = 0.07 has
been used for calculating the occupation numbers of the
LLs and the lateral carrier density profile. The effective
g-factor has been set to g∗ = 7 in order to achieve full
spin splitting. A magnetic field dependent LL broadening
was realized with Γ = Γ0B

1/2 and Γ0 = 0.5meV .[15]
As indicated in Fig. 3, two currents are injected into

the sample. IA,B is applied via the outer boundary and
held constant at 25nA, while I1,2 is applied via the inner
boundary of the sample and it is incremented between
different magnetic field sweeps from I1,2 = −25nA to
+25nA. As shown in Fig. 5(a), the Hall voltage V3,5

at the inner boundary (”anti-Hall bar”) is proportional
to I1,2 while the Hall voltage VC,E at the outer bound-
ary (Hall bar) is insensitive to the current I1,2 (see Fig.
5(b)). The polarity of VC,E for a current IA,B flowing
from left-to-right via the outer boundary, is the same as
the polarity of V3,5 for I1,2 flowing in opposite direction
via the inner boundary. Remarkably, two different quan-
tized Hall voltages can be observed simultaneously in this
configuration, and each depends only on the current in-
jected via the corresponding boundary.

Fig. 6 shows the simulation of the longitudinal voltages
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at the inner and outer boundaries and they are found to
be identical and proportional to the sum of the supplied
currents. It seems not to matter which current (I1,2 or
IA,B) is fixed and which current (I1,2 or IA,B) is varied!
For example, if I1,2 = constant = 25nA, and IA,B varies
from −25nA < IA,B < 25nA, as in case of Fig. 6, the
voltages V3,4 and VC,D increase at the same rate from
zero under current compensation, i.e., IA,B = −I1,2, to
a maximum value at IA,B = I1,2, and there is almost no
difference between Fig. 6(a) and Fig. 6(b).

In experiments, Mani used a GaAs/AlGaAs single het-
erostructure with a carrier density of n0 = 3× 1011cm−2

and a mobility µ(4.2K) = 0.3 − 0.5 × 106cm2/V s. The
layout of the sample is shown in Fig.2. The experimen-
tal Hall effect results are shown in Fig. 7(a) and 7(b),
and one can see that the trends seen in the Hall effects
are in good agreement with the trends obtained in the
simulations (Fig. 5).

So far as the longitudinal voltages are concerned, the
simulations (Fig. 6) should be compared with the ex-
perimental longitudinal voltage data shown in Fig. 8.
Simple inspection suggests that that there is almost no
difference between the longitudinal voltage measured at
the outer and inner boundaries in experiment, just as in
the simulations.

Fig. 9 shows the current density distribution in the
bulk, which results from the simulation for the case of
current compensation (IA,B = −I1,2), for a magnetic
field or filling factor that exhibits quantized Hall effect
in Fig. 5. It is remarkable, that in this case a single cur-
rent loop is formed, see also Fig. 10, which contains both
current sources connected across the bulk, although the
system shows quantized Hall plateaus. This feature con-
firms that a bulk current can go together with quantized
Hall effects.

IV. DISCUSSION

Laughlin’s gauge argument theory is believed to ex-
plain the quantized Hall effect that is observed in the ex-
perimentally examined Hall bar geometry, although the
Hall bar geometry differs topologically from the cylindri-
cal geometry that was examined in his thought experi-
ment.

The experimental investigation of a doubly connected
”anti-Hall bar within a Hall bar” configuration, which
appears topologically equivalent to the doubly connected
cylinder, has shown that more than one Hall effect can
be realized- and observed- at the same time, in a single
specimen.[6–8] For the high magnetic field regime, Mani
gave a possible EC-type interpretation of the two inde-
pendent Hall effects: If ECs are formed, the absence of
back scattering separates the two boundaries and helps to
realize a situation corresponding with two disconnected
samples, with independent Hall effects. Yet, Mani also
found that, in the low magnetic field regime, the sam-
ples showed the same boundary specific Hall effect be-
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FIG. 7: Experimental data of Mani.[6–8] Inset: The ”anti-
Hall bar within a Hall bar” configuration. The voltage probes
and current contacts are labelled as in the simulation of Fig.
5 . (a) The interior Hall voltage, V3,5, with −25 ≤ I1,2 ≤

+25nA and fixed current IA,B = 25nA. (b) The exterior Hall
voltage VC,E under the same conditions remains unchanged.
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FIG. 8: Experimental data from Ref. [6–8]. (a) The longi-
tudinal voltage V3,4. (b) The longitudinal voltage VC,D. The
longitudinal voltages observed on either boundary of the left
branch of the sample are identical because the longitudinal
voltages are insensitive to the boundary of origin of the cur-
rent. At current compensation, IA,B = −I1,2, the diagonal
voltages vanish.
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FIG. 9: The calculated current density distribution, which
suggests bulk flow, is illustrated for the case of current com-
pensation (IA,B = −I1,2) at a magnetic field of B = 8 Tesla
according to Figs.5 and 6. The logarithm of the current den-
sity is color coded as indicated on the right side. The local
currents are obtained from the edge channel picture within
each grid period.

havior as in the high magnetic field regime, although EC
transport should not yet be established. In addition, the
low-magnetic field results for the magneto resistive volt-
age did not show an exclusive dependence on the current
injected to a particular edge, it depended, instead, on
the total current injected into the sample. From this set
of observed features, boundary specificity of the Hall ef-
fect in Mani’s experiments was attributed to a previously
unknown superposition property of Hall’s effect.[6–8]

Looking carefully at the plateau transitions, there can
be seen a slight broadening in Fig. 5(b) where all Hall
traces are plotted on top of each other. Also in the exper-
imental Hall curves in Fig. 7 (b) such a slight broadening
in the superposition seems to be present. We attribute
this effect in the Hall data to a mixing of the longitu-
dinal and the Hall voltage in experiment resulting from
Hall voltage contact misalignment, and to the discretiza-
tion of the network in the simulation. Thus, the observed
transition broadening seems not to require new physics.

Once again, it appears worth pointing out that on the
one hand one obtains two independent Hall voltages (de-
pending only on the current supplied to the correspond-
ing edge) but on the other hand only one longitudinal
voltage, which is the same taken either at the outer or
inner voltage probes (depending only on the sum of the
currents supplied to the outer and inner edge). From this
point of view, the bulk of the sample seems to contribute
homogeneously, which is in contradiction with the idea,
that the edge is exclusively responsible for transport.

In this context it is interesting to see how our network
model deals with this situation. The simulation data
show that we get the proper Hall voltages as well as the
correct behavior of the longitudinal voltage. Although
the theoretical basis of our network model seems to be the
EC picture, it has been shown already, that it is possible
to generalize the Buttiker formalism in order to combine

edge and dissipative bulk transport [10]. This has led to
the introduction of the back scattering function P , which
is also used as the basis of the network model. In ref.
[12], we demonstrated that the most likely mechanism
for bulk current transport is quantum tunnelling between
magnetic bound states, which are caused by long range
potential fluctuations in the high magnetic field regime.
At the same time, we also showed that our network ap-
proach is equivalent to a bulk current picture in terms
of mixed phases of different quantum Hall liquids. This
is demonstrated by Fig.9, where the simulation results
for current compensation in the quantized Hall plateau
region clearly indicate the existence of a bulk current,
which connects both current sources to a single current
loop, which maintains current conservation. Therefore,
we believe to have found a suitable network represen-
tation, which covers edge and bulk effects in the right
way, close to the experimental conditions. As a conse-
quence, most experimental restrictions like the necessity
of metallic contacts and edges exist also for our network
model. Nevertheless, there is more flexibility for design-
ing different sample structures within the network model,
than in real experiments. There are further experiments
by Mani using gates on the ”anti-Hall bar within a Hall
bar” structures [16, 17], which are also accessible by our
network model and which we hope to address in a future
publicaton. Another topic of our ongoing work is the in-
vestigation of the low magnetic field regime, where the
QHE plateaus are not yet established.

V. SUMMARY AND CONCLUSION

We briefly introduced a network model for magneto
transport in two-dimensional electronic systems and pre-
sented simulation results for the so-called ”anti-Hall bar
within a Hall bar” configuration, which is a doubly con-

FIG. 10: A sketch of the current distribution in the ”anti-Hall
bar within a Hall bar” geometry in the compensated current
configuration, IA,B = −I1,2, for which the Hall and diago-
nal voltages are exhibited in Figs. 5 - 8, and the calculated
current distribution is shown in Fig. 9. The figure shows a
bulk current configuration under quantized Hall plateau con-
ditions.
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nected two-dimensional plate that is driven simultane-
ously by two independent floating current sources.

In full agreement with Mani’s experiments, we have
demonstrated that one obtains simultaneous independent
Hall voltages at the inner (”anti-Hall bar”) and outer
boundary (Hall bar) of the ”anti-Hall bar within a Hall
bar” configuration, with each Hall voltage depending ex-
clusively on the current injected into the corresponding
boundary. In contrast, the longitudinal voltages are not
boundary-specific. They depend on the sum of the in-
jected currents and appear identical at the Hall bar and
the ”anti-Hall bar,” as demonstrated by experiment and
network-model based numerical simulations.

Thus, experimentally observed voltages in the ”anti-
Hall bar with a Hall bar” configuration indicate, at the

same time, both edge and bulk like characteristics, al-
though the current seems not to be restricted to the
edge. The network model examined here captures these
features by modelling the sample as a network of sad-
dle points, where each saddle point (node) in the bulk is
treated in an EC picture. In essence, the model examined
here is a generalization of the edge channel picture for the
bulk transport regime. The excellent agreement between
our simulations and experiments for even such a complex
system as the doubly connected two-dimensional electron
device opens the possibility of addressing, in detail, fur-
ther interesting questions related to the nature of the
current and voltage distribution in the two-dimensional
electron system at high magnetic fields.
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