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Abstract:

Numerical simulations of the current domain picture, which is
frequently used to describe the microwave induced zero resistance state
of high mobility 2-dimensional electron systems, are shown. We
demonstrate that we obtain a situation which is equivalent to the current
domain picture by introducing an artificial domain wall into our
network model for magneto transport. However, in contrast to the
current domain picture the current in our simulations is insensitive to
the width of the domains. Finally we propose an alternative picture
where we use several domain walls, which are distributed along the
current path. These serve as current filaments and lead also to a
vanishing longitudinal resistance, while the Hall resistance remains
unchanged.
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1. Introduction

The experimental observation of a zero resistance state [1,2] which
occurs by irradiating a very high-mobility 2D electron gas with
microwaves at low magnetic fields attracted immediately after its
discovery a great deal of attention and a lot of theoretical papers
followed [3,4,5,6]. An often used picture is that one of current domains
(CDs) [5], where the sample is separated in two domains in which
dissipation less currents flow parallel and anti parallel to the domain
wall. The position of the domain wall inside the sample is determined
by the net current flowing in the circuit. Since the current is assumed to
be loss-free no longitudinal voltage drop occurs. The sample is
considered to be infinitely long, meaning that the boundary problem at
the contacts is neglected. It is not the purpose of this paper to give a
physical explanation how such CDs could be generated by the
microwaves, but we want to demonstrate that we are able to simulate a



situation, which is equivalent to the domain wall picture, including the
boundary problem at the metallic contacts. We use a network approach,
which was successfully used for modeling the integer quantum Hall
effect (QHE) for realistic geometry and contact configurations [7]. It
gives exact quantization of Ry, and zero resistance of Ry even for
macroscopically wide edge stripes, which we therefore consider as good
candidates for representing current domains in our network model.

2. The network model

In this section we want to give a brief introduction to the network
model. For more details see reference [7]. The network consists of a
matrix-like arrangement of interconnected nodes (see Fig. 1 left), where
each node represents something like an elementary quantum Hall
sample with two incoming and two outgoing channels.
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Fig. 1: The network consists of interconnected nodes indicated by black
dots. Each node represents something like an elementary quantum Hall
sample with two incoming and two outgoing edge channels. This
network is based on the idea of transport across magnetic bound states
via tunneling, as schematically shown on the right side. P represents a
back scattering function, which is associated with the tunneling process.

The key-point in our model is that the coupling at the nodes is handled
as a back scattering process in the EC picture. On this basis we have
introduced a back scattering function P, which is formally equivalent to
the ratio R/T of the Landauer-Biittiker formalism, with R and T being
the reflection and transmission coefficient respectively. P depends on
the position of the Fermi level and hence, on the filling factor (P =
P(v)). The shape of the sample is defined by the lateral distribution of
the carrier density on the network. The lateral carrier density profile
itself is calculated from the distribution of lateral electrostatic bare
potential, which is used as a tool for designing the shape of the sample.
At this point it should also be mentioned, that each involved LL is
represented by its own complete network and all these networks
contribute in parallel. Contacts are defined within the network by



interconnecting all channels of the different layers of the network
(which are associated with the different LLs) at the designated location
of the contact. For representing current domains we use
macroscopically wide edge stripes, which are created by half filling of
the top LL. The domain wall is defined by preventing a mixture of the
opposite currents in the two domains. In our network model this means
a suppression of the coupling across the designated domain wall. It is
important to know that such a suppression of the coupling cannot be
simply realized by cutting the sample (network) along the current path,
since this generates automatically counter flowing ECs. Instead, we

achieve this by rounding the filling factor to the next higher integer
value inside the domain wall.

3. Results:

The calculations shown in Fig. 2 have been done for a half filled LL.
However, half filling in the bulk leads to the ohmic regime of a standard
QHE sample (Fig. 2 (a)). With domain wall the situation changes
completely. As shown in Fig. 2 (b) the whole potential drop appears
only in a narrow region close to the current contacts. For voltage probes
far from the current contacts this results in a vanishing longitudinal
voltage drop like expected from the CD picture. However, our
simulations don't show any dependence of the sample current on the

width of the two CDs. In Fig. 3 (a) and (b) the corresponding 2D gray
scale picture of the potential distribution is shown.
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Fig. 2: 3D plot of the simulated lateral potential distribution without (a)
and with (b) domain wall.
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Fig. 3: Corresponding 2D gray scale picture of the potential distribution
without (a) and with (b) domain wall.

4. Discussion and conclusion

On one hand we obtain the major agreement with the CD picture that
our model calculations show a vanishing Ry also at non integer filling.
On the other hand there is a major disagreement because in our
simulation the net sample current is independent of the CD widths. For
the standard QH situation it has been shown, that the dissipation less
current flows in the incompressible regions between the so-called edge
stripes [8]. For our case this means that at some distance from the
current contacts the current gets concentrated within the domain wall,
which is physically equivalent to an incompressible stripe of the normal
QH situation. However, it appears quite unlikely that just a single
domain wall should be present in a macroscopic sample carrying the
whole sample current. On this background we propose the idea of
having several domain walls distributed across the whole current path,
which act as some sort of current filaments. The very first simulation of
such a situation (Fig. 4) shows indeed a drastic reduction of R, by
nearly 3 orders of magnitude. In real samples one can expect that there
are much more filaments achieving indeed zero resistance. All the
above shown calculations have been done for a single LL. For the real
case at large filling factors we have a large number of overlapping LLs.
In this case the sample current is distributed over all involved LLs and
their number is determined by the filling factor. On this background we
get a Hall voltage, which continues to increase normally with magnetic
field (decreasing filling factor) while Ry remains at zero. Without the
artificial domain wall the simulations show the normal SdH-
oscillations.
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Fig. 4: Sample layout as used for the simulations. Several domain walls
(current filaments) are distributed along the current path (black bars).
The gray scale indicates the lateral potential distribution.




Acknowledgements:

We acknowledge financial support by the "austriamicrosystems
Arbeitsstiftung" and the "Arbeitsmarktservice Oesterreich". We thank
also R.G. Mani for stimulating discussions.

References:

[1] R.Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Johnson and V.
Umansky, Nature 420, 646 (2002)

[2] M. A. Zudov, R. R. Du, L. N. Pfeiffer and K. W. Westm , Phys. Rev. Lett. 90,
046807 (2003)

[3] J. C. Phillips, ArXiv cond-mat/0301254

[4] A.Durst, S. Sachdev, N. Read and S. M. Girvin, ArXiv cond-mat/0301569

[5S] V. Andreev, L. L. Aleiner and A. J. Millis, ArXiv cond-mat/0302063

[6] P.W. Anderson and W. F. Brinkmann, ArXiv cond-mat/0302129

[71 J. Oswald and A. Homer, Physica E 11, 310 (2001)

[8] E. Ahlswede, P. Weitz, J. Weis, K. von Klitzing and K. Eberl, Physica B 298,
562 (2001)



