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Abstract:

Based on a current balance between edge and bulk we obtain a atiodifaf the Landauer-Blttiker formalism. The

new aspect of this approach is an interpretation of edge

chéE@plbackscattering in terms of a bulk current which

couples the edges. This coupling is described by a novel baeksmagparameter P, which is a functiomP) of the
Landau level filling. We show, that the most important fesgof transport can be modeled already without requesting a
specific function for R{v). In addition, a number of trends in/Rand Ry, from which most of them have been studied
experimentally in the recent work of Shahar et al., can be reproduced by using a pure exponential funcioh for P(
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1. Introduction:

Even more than 15 years after the discovery of
the integer quantum Hall effect (IQHE) in two-
dimensional electronic systems [1], the QHE is still
one major topic of every conference on low
dimensional electronic systems. Particularly the
nature of the transitions between adjacent QH
plateaus is still a controversial question and a
guantitative modeling of the complete transport
regime of the IQHE has not been given so far. While
the quantized values of the Hall resistance are well
described by the edge channel (EC) picture [2], it is
widely believed that the EC-picture is insufficient to

demonstrated, that in the transition regime between
QH-plateaus EC- and bulk transport exist
simultaneously. In this regime dissipative transport
appears in the partly filled top Landau level (LL)
while the contribution of the lower LLs is
represented by dissipationless EC-transport. A
similar picture in terms of a coexistence of edge and
bulk transport has been used to explain the results of
magnetotransport experiments in PbTe wide
guantum wells. In that case the EC-system and the
dissipative bulk system have been explained to result
from electrons in different valleys of the many esll
semiconductor PbTe [5].

It is widely accepted that in the plateau transition

describe also the transport regime between the IQHE fégime backscattering in the top LL enables

plateaus. However, non-local experiments for the
IQHE [3] as well as for the fractional QHE [4] have

dissipative bulk conduction if the Fermi leviel is
near the center of the broadened LL. In the bulk



region a transition to an insulating state occurs if plateau. They found thaip!® shows the same
E. moves out of the center on either side [6]. In \ohavior like o™ in the HI regime, namely a
XX L

fact, this symmetry of the transport behavior with -\ q10n0us increase with increasing magnetic field

respect to the LL center makes ECs unlikely to be ihout any peak-like behavior. It was possible to

responsible for the characteristics of the inter .o anqe aii temperature dependent traces onto each

plateau regime. The p.roblem can be summarized as iner by plotting™ as well asp®™ with respect to

follows: By starting with E. above a completely o h * 9 h

filled top LL, ECs are formed and the transport can (v-v) @™ using the samex =045. Another

be described by the EC-picture without €xperimental factis thap remains quantized on

backscattering. WithE_ approaching the center of the v =1 plateau also in the HI regime below the

the top LL dissipation because of backscattering critical filling factor, while o™ already steeply rises.

becomes possible and finally with, moving below  Fyrthermore Shahar et al. demonstrated, that the

the center of the top LL the associated pair of ECs conductivity components in the HI regimg'f and

disappears. Consequently the contribution of the top ;ir) as well as the extracted components for the top

LL should be different ifE. is above or below the v

center. In contrast, the experimental results of the o )

plateau transitions indicate a symmetric behavior of fulfill a semicircle relation g 2+, > 0o, ). Such

the top LL like one expects for pure bulk transport.  a semicircle relation has been interpreted as being
However, there can be found one particular the consequence of a close relation betwsgrand

regime, where an asymmetric transport behavior in o, [11].

a LL is also obtained in the experiments, namely the

regime of the Hall insulator (HI): Using QHE

samples with not too low disorder, the HI regime is 2. Modeling of backscattering:

entered directly from the = 1 integer QHE regime

without observing the fractional QHE and recent Several attempts for modeling a four-terminal

results [7,8,9] are presently stimulating also the experiment with a discrete backscattering barrier or

ongoing studies of the inter-plateau transitions. An a disordered region between ideal conductors have

analysis of the transport ranging from the HI to the been made already in the past [2,12,13]. As an

adjacent QH liquid regime suggests the existence of example, for the case of a four-terminal

a close relation between the transport behavior in arrangement Biittiker [2,12] obtains

the two regimes [9]: By defining a critical filling

factor v, it is possible to distinguish two regimes R, =(h/€*)[R/(N )] @)

that ~ are  coupled by  the relation nereN s the number of channeBandT are the
Pu(BV) =1/ p,(-Av), where Av is the filling reflection and transmission coefficients of the
factor relative tos.. Another important experimental  parrier. The Landauer-Biittiker (LB) formalism is in
fact is the existence of a critical longitudinal principle general and the transmitting channels are
resistivity p¢ , which appears at the transition point not necessarily edge channels. However, for the
from the QH-liquid to the HI regime [7]. This expl_anation of the quanti_zed Hall resistance values
critical pointv, is indicated by the crossing of the BUttiker uses the EC-picture and therefore the

temperature dependem, traces and the value of transmitting channels are ECs aNdtherefore has
P P o to be identified with the filling factov.

Pi Was found to be close th/e”. Using a tensor Fig.1 shows a typical configuration for studying
based analysis of the experimental data, Shahar etthe effect of EC-backscattering. By applying a gate
al. [10] have been able to extract the contribution of yoltage the 2 dimensional electron gas (2DEG) can
the top LL (referred to ag{*) to the totalp, in the be partly depleted, which allows to achieve a
transition regime between th&* and 2™ QH- controllable reflection of ECs. An extensive

LL (g and U;;p) for the 1, 2 plateau transition



experimental study, in which a number of different We consider a simplified situation in terms of an
gates are used, has been performed e.g. by Muller etequivalent circuit, which allows us to present a short
al. [14]. All these cases had been well described version of the more extended treatment presented in

within the framework of the LB formalism.
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Fig.1: Schematic sample configuration for an eixpental study of
EC-backscattering. The reflection (backscatterisgjorced by a
gated region between ideal conductors. The ungptats are
assumed to be in the plateau regime, where therenois
backscattering. The edge channels are indicated by the arrows.

However, there are some problems associated with Fig.2:

the application of the LB formalism to the plateau
transitions of the QHE: It describes the scattering
region in terms of global transmission and reflection
coefficients between ideal (scattering free)
conductors. In addition, the LB formalism does not

[15]. The situation can be understood to be obtained
from Fig.1 by replacing the gate by an additional

Hall contact pair. Dissipation can now be introduced

by connecting a resistor across this additional
contact pair.
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Schematic sample configuration for repreegnt

backscattering by a dissipative current acrosssitoe R, which
connects both edges. As compared to Fig.1, theigatplaced by

an additional Hall contact pair with an ohmic resi€onnected to it.
Consequently the back scattering process is rgelaepresented by

the reflection ofECs. The edge channels are indicated by the arrows.

The sample it self is supposed to be in the plateau

care about where the associated dissipation OCCUrS.regime, which means that without the artificial

In the example of Fig.1 the additional dissipation
due to the EC reflection occurs directly at the Hall
contacts. In contrast, in the real situation of the
QHE the whole sample enters the regime of finite
Pxx at once and the dissipation occurs directly in the
bulk region of the sample. However, dissipation in
the bulk implies automatically the existence of a
dissipative current in the bulk, which must be
related to the local bulk conductivity and hence to
the particular bulk transport mechanism. The
existence of such a dissipative bulk current is not
addressed by the LB formalism. On this background

the above referenced EC-approach together with the

LB formalism leaves a missing link between the EC-
picture and the local bulk transport properties and

therefore it seems not to be applicable to the plateau

transitions of the QHE.

In the following we are going to develop an
alternative approach for EC-backscattering, which

directly addresses the simultaneous presence of an

edge current and a dissipative current in the bulk.

(bulk) resistorR, there is no backscattering in the
system, which means th&, = 0 between any
longitudinal contact pairs at the same edge. The
Hall voltage will be the same at all 3 Hall contact
pairs, resulting in a Hall resistance of
R, =(1/V) [{e? / h), wherev is the number of EC-

pairs. Now we are going to consider the effect of a
dissipative currenit, across the contact pair 7- 8 and
calculate the resulting longitudinal resistancg R
between the outer voltage probes 2 and 3. In order to
preserve current conservation, the curigmhust be
supplied through the contact arms by the ECs. This
means that there must exist a potential difference
(Hall voltage) between incoming and outgoing ECs
in the contact arms of the middle Hall contacts 7
and 8. Since the incoming ECs carry the potential of
the previous contact 2 and the potential of contact 7
is transmitted to contact 3 by the outgoing EC, the

Hall voltageU ¢ in the contact arm 7 must appear
directly as the longitudinal voltage drbly between



contact 2 and 3. The situation at the lower edge is regime between plateaus, while the transport in the

similar and we obtain: lower LLs remains dissipationless. For a transport
model in the EC-picture one has therefore to
U,=US =1, R, =R, 2) combine one pair of ECs with non-zero

backscattering >0) and a set of EC- pairs

In this way we get a coupling betweep. Bnd R, without backscattering® =0). R, and Rr_ of the
by R, =(,/1)R, We choose a dimensionless ) W
o complete system must finally result from the current

parametep =(I, /1), which serves now as an gigyibution between both EC systems [16]. For
alternative representation of backscattering as treating these parallel systems we use the
compared to the LB formalism: components of the conductance tenghrand G, ,

R, =P[R, 3) which can be obtained from the components of the
resistance tensoR , and R, by the well known

For the case of a 2D systdRy has to be represented | g|ations Gy = Roy / (R,Z +R,?) - The use of

b = 2). The ratio of the currents ) ) )
y R“/ h/(vie) . _ these equations means that we restrict our analysis
P=(l,/1) can be interpreted as the ratio of the to the case of a symmetric behavior where

probability for an edge electron of being scattered to R, =R . In comparison to classical transport this

the opposite edge or not. At this point our approach o responds to the case of a quadratically shaped
formally ~ meets the LB formula for  congyctor. Consequently the equations are formally
R, =(h/€’)[R/(vI)] and a comparison yields the jgentical with the equations for the resistivigy ,
result that P corresponds formally to the re®oT p.. and conductivitys,,, o_. In order to point out

of the LB formula. However, the main difference is =~ o
that our result is directly obtained from considering
the presence of a dissipative current which is not al
edge current. In a more detailed treatment, which is
presented in Ref.15, it is shown that the same result Eqn.3 we get for the top LL:

is obtained if one considers EC-backscattering to

appear continuously all along the conductor like one G = e _P (5)
has to expect in a realistic case and therefore we ask * h %+ p?

to refer to Ref.15 for more details. It is easﬂy Due to the absence of backscattering in the lower
checked that Eqn. 3 also obeys energy conservation:

low _ H
The dissipation due to the sample currierg given LLs we haveG.z* =0 and therefore the totas,, is
by 12[R, which is the same as given by G®. In an analogous way we calculate the

I2PR, = 1,0 R, =1, U, . Hall components:

that the resulting quantities are not necessarily local
n duantities, we continue to use the symbols for global
conductancesc;Xxxy and resistancestxxy. Using

w_ € 1
G®=—GF— (6)
_ Y h 1+P
3. Modeling of transport:
2

For the case of d@ingle LL, which is represented Glow = € W (7)
by a single pair of ECs, we substltutgy by h/¢e
and get where v is the number of filled LLs below the top

LL. The total Hall conductance;Xy is given by the
R, :ﬂ2 P (4) sum of Egn. 6 and Eqn. 7.
e

For a standard QH-system, as e.g. in AlGaAs/GaAs,
backscattering appears only in the top LL in the
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Fig.3: and calculated according to Eqn. 8, Eqn. 9 and Eqrfod@ sheet carrier density of?° = 2410'cm 2 and different factork
R
xy

in the exponent op(Ay) - The range below B = 5T shows just the tracek fer0.08, the range above B = 5T shows the trawealff different
k values as given in the figure. The HI-regime is shown separately with a (ﬁq)((eseale on the right.

Now, using Ry = Grory (G2 +ny2) we obtain
Egn.8 and 9:

_h P (8)
R"X_e2 (V+12+(V P)?

_hg 1 , . 2v+10 9
RW_eZH,+1+P2§:@ +1+P2H %)

where P will be a function of the partial filling
v'®of the top LL. Even though we can obtain
already quite a number of important results without
knowing the specific functiorp(y*?), we will now
continue to derive an appropriate function which is
required for generating complete transport traces.

P(Av) =1/ P(-Av) Whereay is the filling factor of
the top LL relative to the center. It is easily seen
that the only function which is also in agreement
with the experimental observations [9] is of the
form:

P(Av) =exp(-Av /k) (20)

with k being a constant but possibly temperature
dependent factor k(T). In order to get a curve
without a point of inflection atAvy =0, like
experimentally observedjiv must appear linearly
in the exponent. Since the maximum gf is

identified with the center of the top Llay is the

A filling factor relative to half filling. From Fig.3 one

detailed discussion of results, which can be obtained ¢an see that the calculation based on Eqn. 8, Eqn. 9
already without knowing this function is given in and Ean. 10 reproduces very well the typical traces
the discussion section below. known from the experimental curves at different

S . temperatures.
Considering Egn. 5 one can see thaf is P

proportional toP for P <<1, while it changes to a
reciprocal dependence &for P>>1. This implies
that there exists a maximum &_, which has to be

identified with the experimentally obtaine@,- Although we have already given an appropriate
peaks. If we now request a symmetric form@yf, , functionP(Av) which allows us to generate

we have to look for a suitable monotonous function complete QHE traces, we will show that a number of
p(v®). To get perfect symmetry, the form of Eqn. 5 fundamental results can be obtained already without

requires a function which fulfls the relation needing a particular function fex(v). As a first

4. Results and discussion



point one can directly see that Eqn. 5 and Eqn. 6 this regime. For describing this type of transport in

fulfill the semicircle relation g2 +o,? Oa,,,

which is valid also for the complete system. This
semicircle relation was experimentally found to be
valid for the top LL as well as for the HI-regime
[10]. Based on the special form of Egn. 5 we can
distinguish two regimes which are divided by the
point at whichP = 1. In the following we will show
that the regimed < P <1 can be attributed to the
situation where the Fermi level_ is located above

the center of the top LL, whil@ >1 corresponds to
E: below the center of the top LL.
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Fig.4: a) Edge channel conduction in the top-LLlttia presence of
localized magnetic boundstates. The transport sctbe loops
appears as a transverse current, which acts ascksdadtering
process. b) Conduction in the top-LL in the preseat localized
magnetic boundstates but in absence of an assbdlepair. In
contrast to the situation sketched in a), the partisacross the loops
appears now as a longitudinal current. The ECheofdwer LLs are
indicated by the dashed arrows and are considerbd tompletely
de-coupled from the top LL. The relative positidrttee Fermi level
with respect to the LL is indicated at the top of the figure.
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Fig.4a and Fig.4b show schematically the situation
in the two regimes: WhileE_ is moving towards

the center of the broadened top LL (Fig.4a),

localized magnetic bound states are created in the

bulk region in addition to the associated pair of ECs.

Therefore some transport across those loops by e.g.

tunneling becomes possible, which finally acts as
EC-backscatteringQ< P < 1). According to Eqn.4,
Ris directly proportional to the backscattering rate

and hence proportional to the bulk conductivity in

the bulk region, basically a network model such as
e.g. that one of Chalker and Coddington [17] would
be suitable. A situation witl_ below the LL center

is schematically shown in Fig.4b with one major
difference to Fig.4a, namely that the associated EC-
pair is not present, while the transport mechanism
in the bulk itself may remain the same like in the
regime of Fig.4a. Consequently the transport in the
bulk does no longer act as a coupling between
opposite edges, but may contribute now via a current
in the longitudinal direction instead. This will lead
basically to a reciprocal dependence gf Bn the
bulk conductivity in the associated LL. One can
interpret the two regimes as two different phases of
the top LL with perpendicular directions of the
dissipative bulk current. This is in striking
agreement with Ruzin et al. [11] who also found,
that for a correct description of the transport
behavior the bulk current directions in both phases
must be perpendicular to each other.

Characterizing the dissipative transport through
the bulk by a conductivityg, ,, , we get basically

R* 0o, for E. above the LL center and
R® g, "t for E. below the LL center.

Consequently any influence of an eventually existing
temperature dependenceaf, on the longitudinal

transport properties must appear with opposite sign
in the two regimes. This implies that there must be a
crossover of the two regimes where the temperature

dependence ofR is canceled. In this way our

model indicates correctly the existence of metallic
like and insulator like regimes. It is interesting to
note that if one assumes an insulator like
temperature dependence for the bulk conductivity
O, in the whole transport regime, the

temperature dependence gf Rill appear metallic-
like for P <1 and insulator-like forP >1, which is
in agreement with the experimental observations. It
is easily found that the critical (temperature
invariant) point in the crossover regime occurs at
P =1. According to Eqn.4 this means that at the

critical point R® approaches the quantized value

h/e’. P =1 also means that for the transport in a
single LL G, = G, =05€? /h, in agreement with



Ref.18 . In [10] also theR  peak between tha®
and 2™ plateau has been analyzed. It has been
found that the maximum value s/ 4¢* while R®,
at the critical point appears &g 5e”. In our model
the critical point appears & =1, for which we get
a value of R° = h/5¢”, in agreement with [10].
Considering the maximum of Eqn.8 for=1, we
find P =2, which leads tor™ = h/4e?, also in
agreement with [10].

Using the particular functiorP(Ay) according
to Egn.10, we can go a step further: With the help of
Eqn.4 we obtain R® =(h/e?) [@xp(-Av /k),
which is a monotonous function and covers both

regimesP >1 and P <1. Now we can also consider

the principal behavior ob,,, in the tails of the LL

(P>>1 and P<<1) by using o,, OR for
Av>0 and g,, O1/RPfor Av<0. As one
expects for pure bulk transport, we obtain a
symmetric function forg,,, around the LL-center
O, D expf |[AY /k). Thus it is demonstrated,

that our model provides the correct framework to
include also dissipative bulk transport.

The experimental evidence for the non-
symmetric transport behavior ofR® comes with

E. in the lowest LL { =0, see Eqn.8). There
R, is identical toR® and increases monotonously

with decreasing filling factor. This is exactly the
very well experimentally investigated regime of the
HI: R™ has been indeed found to be monotonously

increasing without any peak behavior aRy stays

at the quantized valué/e?, in agreement with
Eqn.9 for v =0. Therefore we can interpret the

behavior in the HI regime to be a direct consequence

of the asymmetric transport behavior of a single LL.
Since in our model the transition to the HI as well a
the inter-plateau transitions are described by the
same functionP(Av), the experimentally observed
equivalent behavior ofR®and R [10] is an

inherent property of our model.

temperatureT enters only the factok in the
exponent of Eqn.10. MoreovefA\y =0 in Egn.10
means thatP =1 and thereforeRS =h/e* for
vV =0, in agreement with [7]. This is also evident
from Fig.3, where the traces cross each other at
RS =h/e* (at B=20T).

A widely used basis for the discussion of
experimental data is the plot of the peak width
AB as a function of temperature. In this context we
analyze the width of theG_, peak, which is
described by Eqn.5: G 0O1/(P 1/P) s
symmetric in P with respect toP=1 and the
maximum appears aP =1. On the basis of this
symmetry we choose a point on each side of@)e
maximum. The associated values of
backscattering function BRy¢) are P, and
P, =1/ P, with B, being a constant, except unity.

the

We can write P =exp@v,/k) and
P, =exp(-Av, /k) and obtain an invariant
expression by considering the  relation

P,/ P, = P? =expRAv, /k), where2Av, can be
identified as the width of th&  peak on the filling
factor scale. Applying the logarithm results in
In(R?) = 2Av, / k =const., which means that the
temperature dependence @Ay, (T) and k(T)

must be the same, regardless any particular form of
k(T). One gets temperature independent traces if

one plots all temperature dependent traces fgr R
versusAv/ k(T). In this way such ‘scaling plots’ of

the whole R, can also be used to obtain the
unknown function k(T) from the experimental

data. This was done by Shahar et al. and the fact
that all experimentally obtained traces Rf* and

R™ of Ref.10 collapse onto a single trace, if plotted
with respect to(v-v,)[OT7", suggests that the
argument of the exponential function should have
the form a (v —v,) T “ with a being a constant.

However, as evident from above, also any alternative
temperature dependendgT) can be used in our

The fact, that the temperature dependence Model, such ase.&(T)=a +4 0, which has been
disappears at a certain point, suggests that thesuggested recently by Shahar et al [19]. Shahar et al.



have interpreted the appearance of this new correctly the existence of metallic likeek1 ) and

temperature dependence as the indication of a newinsulator like (P >1) regimes.
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