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1. Introduction:

Even more than 15 years after the discovery of
the integer quantum Hall effect (IQHE) in two-
dimensional electronic systems [1], the QHE is still
one major topic of every conference on low
dimensional electronic systems. Particularly the
nature of the transitions between adjacent QH
plateaus is still a controversial question and a
quantitative modeling of the complete transport
regime of the IQHE has not been given so far. While
the quantized values of the Hall resistance are well
described by the edge channel (EC) picture [2], it is
widely believed that the EC-picture is insufficient to
describe also the transport regime between the IQHE
plateaus. However, non-local experiments for the
IQHE [3] as well as for the fractional QHE [4] have

demonstrated, that in the transition regime between
QH-plateaus EC- and bulk transport exist
simultaneously. In this regime dissipative transport
appears in the partly filled top Landau level (LL)
while the contribution of the lower LLs is
represented by dissipationless EC-transport. A
similar picture in terms of a coexistence of edge and
bulk transport has been used to explain the results of
magnetotransport experiments in PbTe wide
quantum wells. In that case the EC-system and the
dissipative bulk system have been explained to result
from electrons in different valleys of the many valley
semiconductor PbTe [5].

It is widely accepted that in the plateau transition
regime backscattering in the top LL enables
dissipative bulk conduction if the Fermi level EF

 is

near the center of the broadened LL. In the bulk
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region a transition to an insulating state occurs if
EF

 moves out of the center on either side [6]. In

fact, this symmetry of the transport behavior with
respect to the LL center makes ECs unlikely to be
responsible for the characteristics of the inter
plateau regime. The problem can be summarized as
follows: By starting with EF

 above a completely

filled top LL, ECs are formed and the transport can
be described by the EC-picture without
backscattering.  With EF

 approaching the center of

the top LL dissipation because of backscattering
becomes possible and finally with EF

 moving below

the center of the top LL the associated pair of ECs
disappears.  Consequently the contribution of the top
LL should be different if EF

 is above or below the

center. In contrast, the experimental results of the
plateau transitions indicate a symmetric behavior of
the top LL like one expects for pure bulk transport.

However, there can be found one particular
regime, where an asymmetric transport behavior in
a LL is also obtained in the experiments, namely the
regime of the Hall insulator (HI): Using QHE
samples with not too low disorder, the HI regime is
entered directly from the ν = 1  integer QHE regime
without observing the fractional QHE and recent
results [7,8,9] are presently stimulating also the
ongoing studies of the inter-plateau transitions. An
analysis of the transport ranging from the HI to the
adjacent QH liquid regime suggests the existence of
a close relation between the transport behavior in
the two regimes [9]:  By defining a critical  filling
factor νc it is possible to distinguish two regimes
that are coupled by the relation
ρ ν ρ νxx xx( ) / ( )∆ ∆= −1 , where ∆ν  is the filling

factor relative to νc. Another important experimental
fact is the existence of a critical longitudinal
resistivity ρxx

c , which appears at the transition point

from the QH-liquid to the HI regime [7]. This
critical point νc is indicated by the crossing of the

temperature dependent ρxx  traces and the value of

ρxx
c  was found to be close to h e/ 2 . Using a tensor

based analysis of the experimental data, Shahar et
al. [10] have been able to extract the contribution of
the top LL (referred to as ρxx

top ) to the total ρxx
 in the

transition regime between the 1st  and 2nd  QH-

plateau. They found that ρxx
top  shows the same

behavior like ρxx
ins  in the HI regime, namely a

monotonous increase with increasing magnetic field
without any peak-like behavior. It was possible to
collapse all temperature dependent traces onto each
other by plotting ρxx

ins  as well as ρxx
top  with respect to

( )ν ν κ− ⋅ −
c T  using the same κ = 0 45. . Another

experimental fact is that ρxy  remains quantized on

the ν = 1 plateau also in the HI regime below the
critical filling factor, while ρxx

ins  already steeply rises.

Furthermore Shahar et al. demonstrated, that the
conductivity components in the HI regime (σ xx

ins  and

σ xy
ins ) as well as the extracted components for the top

LL ( σ xx
top  and σ xy

top ) for the 1 2→  plateau transition

fulfill a semicircle relation (σ σ σxx xy xy
2 2+ ∝ ). Such

a semicircle relation has been interpreted as being
the consequence of a close relation between σxx and
σxy [11].

2. Modeling of backscattering:

Several attempts for modeling a four-terminal
experiment with a discrete backscattering barrier or
a disordered region between ideal conductors have
been made already in the past [2,12,13]. As an
example, for the case of a four-terminal
arrangement Büttiker [2,12] obtains

Eqn. 1R h e R N Txx = ⋅( / )[ / ( )]2 (1)

where N is the number of channels, R and T are the
reflection and transmission coefficients of the
barrier. The Landauer-Büttiker (LB) formalism is in
principle general and the transmitting channels are
not necessarily edge channels. However, for the
explanation of the quantized Hall resistance values
Büttiker uses the EC-picture and therefore the
transmitting channels are ECs and N therefore has
to be identified with the filling factor ν.

Fig.1 shows a typical configuration for studying
the effect of EC-backscattering. By applying a gate
voltage the 2 dimensional electron gas (2DEG) can
be partly depleted, which allows to achieve a
controllable reflection of ECs. An extensive
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experimental study, in which a number of different
gates are used, has been performed e.g. by Müller et
al. [14]. All these cases had been well described
within the framework of the LB formalism.

 Fig.1: Schematic sample configuration for an experimental study of
EC-backscattering. The  reflection (backscattering) is forced by a
gated region between ideal conductors. The ungated parts are
assumed to be in the plateau regime, where there is no
backscattering. The edge channels are indicated by the arrows.

However, there are some problems associated with
the application of the LB formalism to the plateau
transitions of the QHE: It describes the scattering
region in terms of global transmission and reflection
coefficients between ideal (scattering free)
conductors. In addition, the LB formalism does not
care about where the associated dissipation occurs.
In the example of Fig.1 the additional dissipation
due to the EC reflection occurs directly at the Hall
contacts. In contrast, in the real situation of the
QHE the whole sample enters the regime of finite
ρxx at once and the dissipation occurs directly in the
bulk region of the sample. However, dissipation in
the bulk implies automatically the existence of a
dissipative current in the bulk, which must be
related to the local bulk conductivity and hence to
the particular bulk transport mechanism. The
existence of such a dissipative bulk current is not
addressed by the LB formalism. On this background
the above referenced EC-approach together with the
LB formalism leaves a missing link between the EC-
picture and the local bulk transport properties and
therefore it seems not to be applicable to the plateau
transitions of the QHE.

In the following we are going to develop an
alternative approach for EC-backscattering, which
directly addresses the simultaneous presence of an
edge current and a dissipative current in the bulk.

We consider a simplified situation in terms of an
equivalent circuit, which allows us to present a short
version of the more extended treatment presented in
[15]. The situation can be understood to be obtained
from Fig.1 by replacing the gate by an additional
Hall contact pair. Dissipation can now be introduced
by connecting a resistor across this additional
contact pair.

Fig.2: Schematic sample configuration for representing
backscattering by a dissipative current across a resistor R, which
connects both edges. As compared to Fig.1, the gate is replaced by
an additional Hall contact pair with an ohmic resistor connected to it.
Consequently  the back scattering process is no longer represented by
the reflection of ECs. The edge channels are indicated by the arrows.

The sample it self is supposed to be in the plateau
regime, which means that without the artificial
(bulk) resistor Rb there is no backscattering in the
system, which means that Rxx = 0 between any
longitudinal contact pairs at the same edge. The
Hall voltage will be the same at all 3 Hall contact
pairs, resulting in a Hall resistance of
R e hxy = ⋅( / ) ( / )1 2ν , where ν is the number of EC-

pairs. Now we are going to consider the effect of a
dissipative current Ib across the contact pair 7- 8 and
calculate the resulting longitudinal resistance Rxx

between the outer voltage probes 2 and 3. In order to
preserve current conservation, the current Ib must be
supplied through the contact arms by the ECs. This
means that there must exist a potential difference
(Hall voltage) between incoming and outgoing ECs
in the contact arms of the middle Hall contacts 7
and 8. Since the incoming ECs carry the potential of
the previous contact 2 and the potential of contact 7
is transmitted to contact 3 by the outgoing EC, the
Hall voltage U xy

c  in the contact arm 7 must appear

directly as the longitudinal voltage drop Uxx between
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contact 2 and 3. The situation at the lower edge is
similar and we obtain:

n. 2U U I R I Rxx xy
c

b xy xx= = ⋅ = ⋅   (2)

In this way we get a coupling between Rxx and Rxy

by R I I Rxx b xy= ⋅( / ) . We choose a dimensionless

parameterP I Ib= ( / ) , which serves now as an

alternative representation of backscattering as
compared to the LB formalism:

Eqn. 3R P Rxx xy= ⋅ (3)

For the case of a 2D system Rxy has to be represented
by R h exy = ⋅/ ( )ν 2 . The ratio of the currents

P I Ib= ( / )  can be interpreted as the ratio of the

probability for an edge electron of being scattered to
the opposite edge or not. At this point our approach
formally meets the LB formula for
R h e R Txx = ⋅( / )[ / ( )]2 ν  and a comparison yields the

result that P corresponds formally to the ratio R T/
of the LB formula. However, the main difference is
that our result is directly obtained from considering
the presence of  a dissipative current which is not an
edge current.  In a more detailed treatment, which is
presented in Ref.15, it is shown that the same result
is obtained if one considers EC-backscattering to
appear continuously all along the conductor like one
has to expect in a realistic case and therefore we ask
to refer to Ref.15 for more details. It is easily
checked that Eqn. 3 also obeys energy conservation:
The dissipation due to the sample current I is given
by I Rxx

2 ⋅  which is the same as

I P R I I R I Uxy b xy b xy
2 ⋅ ⋅ = ⋅ ⋅ = ⋅ .

3. Modeling of transport:

For the case of a single LL, which is represented
by a single pair of ECs, we substitute Rxy

 by h e/ 2

and get

 Eqn. 4R
h

e
Pxx = ⋅2

(4)

For a standard QH-system, as e.g. in AlGaAs/GaAs,
backscattering appears only in the top LL in the

regime between plateaus, while the transport in the
lower LLs remains dissipationless. For a transport
model in the EC-picture one has therefore to
combine one pair of ECs with non-zero
backscattering (P > 0 ) and a set of EC- pairs
without backscattering (P = 0 ). Rxx

 and Rxy
 of the

complete system must finally result from the current
distribution between both EC systems [16]. For
treating these parallel systems we use the
components of the conductance tensor Gxx

and Gxy
,

which can be obtained from the components of the
resistance tensor Rxx

 and Rxy
 by the well known

relations G R R Rxx xy xx xy xx xy, , / ( )= +2 2 . The use of

these equations means that we restrict our analysis
to the case of a symmetric behavior where
R Rxx yy= . In comparison to classical transport this

corresponds to the case of a quadratically shaped
conductor. Consequently the equations are formally
identical with the equations for the resistivity ρxx

,

ρxy
 and conductivity σ xx

, σ xy
. In order to point out

that the resulting quantities are not necessarily local
quantities, we continue to use the symbols for global
conductances Gxx xy,

 and resistances Rxx xy,
. Using

Eqn.3 we get for the top LL:

 Eqn. 5G
e

h

P

Pxx
top = ⋅

+

2

21
(5)

Due to the absence of backscattering in the lower
LLs we have Gxx

low = 0 and therefore the total Gxx
 is

given by Gxx
top . In an analogous way we calculate the

Hall components:

Eqn. 6G
e

h Pxy
top = ⋅

+

2

2

1

1
(6)

Eqn. 7G
e

hxy
low = ⋅

2

ν (7)

where ν  is the number of filled LLs below the top
LL. The total Hall conductance Gxy

 is given by the

sum of Eqn. 6 and Eqn. 7.
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Now, using R G G Gxx xy xx xy xx xy, , / ( )= +2 2  we obtain

Eqn.8 and 9:

Eqn. 8R
h

e

P

Pxx =
+ + ⋅2 2 21( ) ( )ν ν

(8)

Eqn. 9R
h

e P Pxy = +
+






⋅ +

+
+







−

2 2
2

2

11

1

2 1

1
ν ν

ν (9)

where P will be a function of the partial filling
ν top of the top LL.  Even though we can obtain
already quite a number of important results without
knowing the specific function P top( )ν , we will now

continue to derive an appropriate function which is
required for generating complete transport traces. A
detailed discussion of results, which can be obtained
already without knowing this function is given in
the discussion section below.

Considering Eqn. 5 one can see that Gxx
 is

proportional to P for P <<1, while it changes to a
reciprocal dependence on P for P >>1. This implies
that there exists a maximum of Gxx

, which has to be

identified with the experimentally obtained Gxx-
peaks. If we now request a symmetric form of Gxx ,

we have to look for a suitable monotonous function
P top( )ν . To get perfect symmetry, the form of Eqn. 5

requires a function which fulfils the relation

P P( ) / ( )∆ ∆ν ν= −1  where ∆ν  is the filling factor of

the top LL relative to the center. It is easily seen,
that the only function which is also in agreement
with the experimental observations [9] is of the
form:

 Eqn. 10P k( ) exp( / )∆ ∆ν ν= − (10)

with k being a constant but possibly temperature
dependent factor k(T). In order to get a curve
without a point of inflection at ∆ν = 0, like
experimentally observed, ∆ν  must appear linearly
in the exponent. Since the maximum of Gxx

 is

identified with the center of the top LL, ∆ν  is the
filling factor relative to half filling. From Fig.3 one
can see that the calculation based on Eqn. 8, Eqn. 9
and Eqn. 10 reproduces very well the typical traces
known from the experimental curves at different
temperatures.

4. Results and discussion

Although we have already given an appropriate
functionP( )∆ν  which allows us to generate

complete QHE traces, we will show that a number of
fundamental results can be obtained already without
needing a particular function forP top( )ν . As a first

Fig.3: Rxx
 and Rxy

 calculated according to Eqn. 8, Eqn. 9 and Eqn. 10 for a sheet carrier density of  n cmD2 11 22 4 10= ⋅ −.  and different factors k

in the exponent of P( )∆ν . The range below B = 5T shows just the traces for k = 0.08, the range above B = 5T shows the traces for all different

k values as given in the figure. The HI-regime is shown separately with a different Rxx
scale on the right.
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point one can directly see that Eqn. 5 and Eqn. 6
fulfill the semicircle relation σ σ σxx xy xy

2 2+ ∝ ,

which is valid also for the complete system. This
semicircle relation was experimentally found to be
valid for the top LL as well as for the HI-regime
[10]. Based on the special form of Eqn. 5 we can
distinguish two regimes which are divided by the
point at which P = 1. In the following we will show
that the regime 0 1< <P  can be attributed to the
situation where the Fermi level EF

 is located above

the center of the top LL, while P > 1 corresponds to
EF  below the center of the top LL.

Fig.4: a) Edge channel conduction in the top-LL in the presence of
localized magnetic boundstates. The transport across the loops
appears as a transverse current, which acts as a backscattering
process. b) Conduction in the top-LL in the presence of localized
magnetic boundstates but in absence of an associated EC-pair. In
contrast to the situation sketched in a), the transport across the loops
appears now as a longitudinal current. The ECs of the lower LLs are
indicated by the dashed arrows and are considered to be completely
de-coupled from the top LL. The relative position of the Fermi level
with respect to the LL is indicated at the top of the figure.

Fig.4a and Fig.4b show schematically the situation
in the two regimes: While EF

 is moving towards

the center of the broadened top LL (Fig.4a),
localized magnetic bound states are created in the
bulk region in addition to the associated pair of ECs.
Therefore some transport across those loops by e.g.
tunneling becomes possible, which finally acts as
EC-backscattering (0 1< <P ). According to Eqn.4,
Rxx

top is directly proportional to the backscattering rate

and hence proportional to the bulk conductivity in

this regime. For describing this type of transport in
the bulk region, basically a network model such as
e.g. that one of Chalker and Coddington [17] would
be suitable. A situation with EF

 below the LL center

is schematically shown in Fig.4b with one major
difference to Fig.4a, namely that the associated EC-
pair is not present, while the transport mechanism
in the bulk itself may remain the same like in the
regime of Fig.4a. Consequently the transport in the
bulk does no longer act as a coupling between
opposite edges, but may contribute now via a current
in the longitudinal direction instead. This will lead
basically to a reciprocal dependence of Rxx on the
bulk conductivity in the associated LL. One can
interpret the two regimes as two different phases of
the top LL with perpendicular directions of the
dissipative bulk current. This is in striking
agreement with Ruzin et al. [11] who also found,
that for a correct description of the transport
behavior the bulk current directions in both phases
must be perpendicular to each other.

Characterizing the dissipative transport through
the bulk by a conductivity σbulk , we get basically

Rxx
top

bulk∝ σ  for E F
 above the LL center and

Rxx
top

bulk∝ −σ 1  for EF
 below the LL center.

Consequently any influence of an eventually existing
temperature dependence of σbulk

 on the longitudinal

transport properties must appear with opposite sign
in the two regimes. This implies that there must be a
crossover of the two regimes where the temperature

dependence of Rxx is canceled. In this way our

model indicates correctly the existence of metallic
like and insulator like regimes. It is interesting to
note that if one assumes an insulator like
temperature dependence for the bulk conductivity
σ bulk  in the whole transport regime, the

temperature dependence of Rxx will appear metallic-
like for P < 1 and insulator-like for P >1, which is
in agreement with the experimental observations. It
is easily found that the critical (temperature
invariant) point in the crossover regime occurs at
P = 1. According to Eqn.4 this means that at the
critical point Rxx

top  approaches the quantized value

h e/ 2 .  P = 1 also means that for the transport in a
single LL  G G e hxx xy= = 05 2. / , in agreement with
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Ref.18 . In [10] also the Rxx  peak between the 1st

and 2nd  plateau has been analyzed. It has been
found that the maximum value is h e/ 4 2  while Rxx

c

at the critical point appears as h e/ 5 2 . In our model
the critical point appears at P = 1, for which we get

a value of Rxx
c = h e/ 5 2 , in agreement with [10].

Considering the maximum of Eqn.8 for ν = 1, we
find P = 2, which leads to Rxx

max = h e/ 4 2 , also in

agreement with [10].

Using the particular function P( )∆ν  according

to Eqn.10, we can go a step further: With the help of
Eqn.4 we obtain R h e kxx

top = ⋅ −( / ) exp( / ),2 ∆ν
which is a monotonous function and covers both
regimes P > 1 and P < 1. Now we can also consider
the principal behavior of σbulk  in the tails of the LL

( P >> 1 and P <<1) by using σ bulk xx
topR∝  for

∆ν > 0  and σbulk xx
topR∝ 1/ for ∆ν < 0 . As one

expects for pure bulk transport, we obtain a
symmetric function for σbulk  around the LL-center

σ νbulk k∝ −exp( / )∆ . Thus it is demonstrated,

that our model provides the correct framework  to
include also dissipative bulk transport.

The experimental evidence for the non-
symmetric transport behavior of  Rxx

top  comes with

EF  in the lowest LL (ν = 0 , see Eqn.8). There

Rxx
 is identical to Rxx

top  and increases monotonously

with decreasing filling factor. This is exactly  the
very well experimentally investigated regime of the
HI: Rxx

ins  has been indeed found to be monotonously

increasing without any peak behavior and Rxy  stays

at the quantized value h e/ 2 , in agreement with
Eqn.9 for ν = 0. Therefore we can interpret the
behavior in the HI regime to be a direct consequence
of the asymmetric transport behavior of a single LL.
Since in our model the transition to the HI as well as
the inter-plateau transitions are described by the
same function P( )∆ν , the experimentally observed

equivalent behavior of Rxx
top and Rxx

ins  [10] is an

inherent property of our model.

 The fact, that the temperature dependence
disappears at a certain point, suggests that the

temperature T enters only the factor k in the
exponent of Eqn.10. Moreover, ∆ν = 0  in Eqn.10
means that P = 1  and therefore R h exx

c = / 2  for

ν = 0 , in agreement with [7]. This is also evident
from Fig.3, where the traces cross each other at
R h exx

c = / 2  (at B T= 20 ).

A widely used basis for the discussion of
experimental data is the plot of theρxx

 peak width

∆B  as a function of temperature. In this context we
analyze the width of the Gxx

 peak, which is

described by Eqn.5: G P Pxx ∝ +1 1/ ( / )  is

symmetric in P with respect to P = 1 and the
maximum appears at P = 1. On the basis of this
symmetry we choose a point on each side of the Gxx

maximum. The associated values of the
backscattering function P(∆ν) are P1

 and

P P2 11= / , with P1  being a constant, except unity.

We can write P k1 1= exp( / )∆ν  and

P k2 1= −exp( / )∆ν  and obtain an invariant

expression by considering the relation

P P P k1 2 1
2

12/ exp( / )= = ∆ν , where 2 1∆ν  can be

identified as the width of the Gxx  peak on the filling

factor scale. Applying the logarithm results in
ln( ) / .P k const1

2
12= =∆ν , which means that the

temperature dependence of 2 1∆ν ( )T  and k T( )

must be the same, regardless any particular form of
k T( ) . One gets temperature independent traces if

one plots all temperature dependent traces for Rxx

versus ∆ν / ( )k T . In this way such ‘scaling plots’ of

the whole Rxx can also be used to obtain the
unknown function k T( )  from the experimental

data. This was done by Shahar et al. and the fact
that all experimentally obtained traces of Rxx

top and

Rxx
ins  of Ref.10 collapse onto a single trace, if plotted

with respect to ( )ν ν κ− ⋅ −
c T , suggests that the

argument of the exponential function should have
the form α ν ν κ⋅ − ⋅ −( )c T with α being a constant.

However, as evident from above, also any alternative
temperature dependence k T( )  can be used in our

model, such as e.g. k T T( ) = + ⋅α β , which has been

suggested recently by Shahar et al [19]. Shahar et al.
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have interpreted the appearance of this new
temperature dependence as the indication of a new
transport regime for the QHE. Since we have shown
that many of the features can be modeled without
needing a special form of the backscattering
function, it might indeed happen, that different
dominating bulk transport mechanisms cause
similar experimental features.

5. Summary and conclusion:

In summary we have presented a model for the
IQHE which makes use of a novel representation of
backscattering. It successfully describes the full
transport regime between the plateaus as well as the
transitions between the QH-liquid and insulator
regimes. Even though we use the edge channel
approach for the IQHE as an input for our model,
the results are more general and the model provides
the correct framework to include also dissipative
bulk transport. We have shown that already the
interplay between edge and bulk leads to a number
of important features, which seem to be insensitive
to the nature of a particular bulk transport
mechanism. Quite a number of well known facts can
be obtained without needing the particular function
of backscattering versus Landau level filling P( )∆ν :

(i) the semicircle relation between σ xx
 and σ xy

 for

the complete QH regime as well as for the Hall
insulator (HI) regime, (ii) the critical value
ρxx

c h e= / 2  in the HI regime, (iii) the value

σ σxx xy e h= = 05 2. /  at the critical point for a

single Landau level,  (iv) the maximum value
ρxx h emax /= 4 2  for the 1→2 transition,  (v) the critical

value ρxx
c h e= / 5 2  for the 1→2 transition. Using an

exponential function for P( )∆ν  we obtain further:

(vi) the validity of the relation ρ ν ρ νxx xx( ) / ( )∆ ∆= −1

between the HI and the adjacent QH-liquid regime,
(vii) the equivalence of the temperature scaling of
ρxx

 in the HI regime, of ρxx
 of the top LL and of

the ρxx
- peak width. (viii) regarding the

temperature dependence (using any k(T) mono-
tonously increasing with T), the model indicates

correctly the existence of metallic like (P <1 ) and
insulator like (P > 1) regimes.
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