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A Landauer-Büttiker type representation of bulk current transport is used for the nu-
merical simulation of the magneto-transport of 2-dimensional electron systems. It allows
us to build up a network model, which describes the effect of non-equilibrium currents
injected via metallic contacts like in real experiments. Our model suggests a peak-like
contribution of de-localized states to the bulk conductance, which appears embedded
in the density of states (DOS) of the Landau levels (LLs). In contrast, the localization
picture of the quantum Hall effect suggests almost sharp boundaries between localized
and de-localized states and does not explicitly map out their contribution to the bulk
conductance. Most recent experiments by B.A. Piot et al. suggest a similar peak-like
contribution of de-localized states near the center of the LLs. Our simulation results for
the same parameter values as determined by Piot et al reproduce their experimental data
very well.
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1. Modeling of magneto-transport

Although the basic layout of our network looks similar to the well known Chalker-

Coddington (CC) network 1, our handling of the nodes as well as the association of

the channels with currents and potentials is substantially different and has nothing

to do with the CC model. In the following, only the main facts are summarized

and for further details please refer to the cited literature2. Fig.1a shows a single

node of our network, which transmits potentials from the incoming to the outgoing

directed channels, while Fig.1b demonstrates, how a network can be composed by

combining several nodes. The transmitted potentials are calculated as follows 2,3:

u2 = (u1 + P · u3)/(1 + P ), u4 = (u3 + P · u1)/(1 + P ). The geometry of the

sample is defined by shaping the lateral density profile of the carriers, which are

distributed over the network grid. The local carriers density enters the nodes via

the function P , which depends locally on EF −ELL, with EF the Fermi energy and

ELL the Landau level (LL) center. Therefore P is in general different for different

nodes and each involved Landau band is represented by a complete network3. In
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Fig. 1. a) Node of the network with two incoming and two outgoing directed channels. The
channels 1 → 2 and 3 → 4 are treated like edge channels with backscattering, where P = R/T
according to the Landauer- Büttiker formalism with R the reflection and T the transmission
coefficient. b) Arrangement of the nodes for building the minimal physical element of a network,
which is the closed loop of a so called magnetic bound state. The complete network is composed

by putting together a sufficient number of such adjacent loops.

this way contact leads, gate electrodes and the effect of inhomogeneities can be

modeled. The theoretical basis of P is transmission across saddle points of long

rage potential fluctuations in the bulk2.

P = exp

[

−

L2(EF − ELL)

eṼ

eB

h

]

(1)

The saddle energy corresponds to the LL center ELL, eB/h is the number of states

of a LL, L and Ṽ are connected to the Taylor expansion of the involved saddle

point: L is the period and Ṽ the amplitude of a two-dimensional Cosine-potential,

which has the same 2nd order Taylor expansion like the actual saddle potential.

Representing the encircled saddle in Fig. 2 by an appropriate 2-dimensional Cosine

Fig. 2. Schematic one-dimensional representation (x - profile) of a fluctuating potential together
with the idealized 2D-Cosine potential with the right Taylor coefficients for representing the en-
circled saddle.

potential, which matches the saddle curvature, we get the dashed plotted Cosine

function. However, the real potential modulation results from a random potential.

It is easily seen, that therefore the overall LL broadening Γ will be larger than Ṽ .

For the numerical calculation we have two options: (i) we introduce a realis-

tic fluctuating potential modulation, which can be discretizised on our periodic

network grid (as described in Ref. 2) or (ii) we use a periodic grid of reduced lat-

eral resolution without explicitly including potential fluctuations. For realistically

shaped macroscopic sample structures the requirements for option (i) are presently

beyond our numerical capabilities and therefore we use the latter one. In case (ii)
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L corresponds to a much larger length than the real mean fluctuation period and

therefore also the corresponding potential modulation Ṽ appears much larger than

the real mean fluctuation amplitude. Consequently, neither L nor Ṽ have a physi-

cal meaning independently from each other. Only the pre-factor of (EF − ELL) in

the exponent of Eqn.1 as a whole is relevant. It defines an energy interval for the

Fermi level, in which bulk conduction is possible. The overall LL broadening, which

we assume to be Gaussian, in this case is only used for calculating the magnetic

field dependent Fermi level EF . Therefore different parameters have to be used for

describing DOS(EF ) and the bulk conductance Gxx(EF ). This is demonstrated for

the most simple case of representing the whole sample by a single node and deriving

Gxx(EF ) for a single LL4: Since Rxx = P ·h/e2 and Gxx = Rxx/(R2
xx+R2

xy), we get

Gxx = (e2/h) · P/(1 + P 2), which forms a peak while P = 0 −→ ∞. If we plot now

DOS(EF ) and Gxx(EF ) normalized to each other within the same diagram, we get

a situation like shown in Fig.3. While the localization picture maps out localized and

Fig. 3. DOS and conductance Gxx versus Fermi energy. Our model suggests a smooth change of
the bulk conductance at the boundaries between localized and de-localized states mapped out by
the localization model (indicated by the two vertical dashed lines). The light colored Gxx-peak
can be understood to correspond with the light colored region around the saddle energy in Fig.2.
The labeling Γdl for the conductance peak width has been chosen in accordance to Piot et al as
discussed in section 2

de-localized states as a function of energy5, our model considers current transport

across localized magnetic bound states by tunneling. The associated conductance

decays exponentially as a function of the energy like indicated in Fig.3. Such a

smearing-out of the sharp boundaries between localized and de-localized states in

the observed conductance variation is evident from actual experimental results6.

2. Results and conclusion

Our simulations follow most recent experiments by B.A. Piot et al6. The authors

analyzed experimental data in order to extract the filling factor dependent exchange
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enhanced effective g-factor geff . For the data analysis they assumed the magnetic

field dependent longitudinal resistance to be an appropriate tool to monitor directly

the DOS at the Fermi level. This led them to assume a peak-like density of current

carrying states of width Γdl (corresponding to the width of our Gxx-peak in Fig.3),

which appears embedded in the overall DOS of substantially larger width Γ. In

order to demonstrate the correspondence with our model, we use the fit parameters

of Piot et al as an input and simulate their experimental data. It is important to

note, that for our numerical model we have to use a function geff versus B, which

is sample specific, because the physical background is a filling factor dependence

of geff . Further more, geff is only known and extracted at the field positions of

appearing spin-splitting in Rxx. At magnetic fields away from the observed spin

splitting the g-value has no significance for the transport data. Therefore a simple

monotonous function has been used for the simulations, which seems to allow a good

agreement with the experimental results. Since an overall oscillatory behavior of

geff versus B has to be expected, the used monotonous function for connecting the

extracted g-values must not be taken for real. The still achieved very good agreement

between simulation and experiment in Fig.4 therefore demonstrates, that transport

is not sensitive to spin splitting at arbitrary magnetic fields. The amplitude of the

Fig. 4. Simulation results and experimental Rxx-data of Piot et al. Simulation parameters: Γ =
6K, Γdl = 1.48K, n = 2.07 · 1011cm−2. The used network consisted of 155x93 nodes. Insert: The
dots represent the g-values of Piot et al at the B-field positions of occurring spin splitting. The
continuous dotted line is a polynomial fit of geff versus B. The amplitude of the simulation data
is normalized to the amplitude of the experimental data at B = 0,8 Tesla.

simulation data in the range above 0.6 Tesla is about a factor of 3 larger than in the
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experiment. The additionally obtained Hall resistance Rxy provides no additional

information and is not shown. Our model addresses also edge-bulk equilibration,

which has an influence on the Rxx-peak heights7. If bulk and the inner edge channel

belong to the same LL, we expect a stronger equilibration (increase of the Rxx-

peak height) as if they belong to different LLs (decrease of the Rxx-peak height).

In this way the sequence of the alternating peak heights of the spin split LLs is

captured correctly by our simulations. The mismatch of the absolute amplitude

between simulations and experiments may result from an insufficient representation

of the sample geometry and an insufficient representation of the sample edge and

thus, missing further details of edge-bulk equilibration. We use the same parameter

values as obtained by Piot et al (given in caption of Fig.4) with one exception:

For the overall LL broadening Γ we use 6 K instead of 2.2K. Once more it should

be pointed out, that for the actual calculation, which does not resolve the native

potential fluctuations on the network grid, the individual values for L and Ṽ have

no physical meaning. Instead, the energy interval defined by the whole pre-factor of

(EF −ELL) in the exponent of Eqn.1 is the decisive parameter, which corresponds

to Γdl defined by Piot et al. For the simulation, the expression (eṼ /L2)(h/eB) has

been threaded as a single B-dependent parameter, that was set to match the value

Γdl of Piot et al at B=0.8T.

In conclusion we have shown, that by using a circuit type network model for

magneto-transport, the main experimental features of Rxx can be captured, includ-

ing the set-in of spin splitting and the corresponding relation of the peak heights.

We find a good agreement with an analysis of experimental data by Piot et al, who

assume Rxx to monitor the density of current carrying states at the Fermi level.

They extracted a peak-like distribution of width Γdl, which appears embedded in

the overall DOS of width Γ > Γdl. Our model indicates a peak-like variation of

the bulk conductance, which leads to a very good reproduction of the experimental

data for the same parameter values as obtained by Piot et al. Thus, on the one

hand, our model confirms the correctness of the data analysis by Piot et al, and

in this context it supports to some extend also the idea of a peak-like distribution

of de-localized states. On the other hand, however, the only DOS which enters our

model is the total DOS of the LLs of width Γ. The embedded conductance peak is a

result of our model and therefore a further step towards an interpretation in terms

of a density of de-localized states on the background of our model is in principle

not compelling.
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